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Abstract

Many current lightstages have the challange of re-lighting objects from sparse
sampling, which enforces the usage of neural networks or other complex algorithms
to realistically blend together specular highlights from light sources from in between
these samples. To increase the sample rate, it might come to mind to use monitors
instead of single LED-lights, since they enable nearly continuous illumination due
to much higher pixel density. Therefore, I build a monitor-based lightstage in this
Bachelor thesis, program the software for it and run some small tests to make the
first steps of acquiring high-quality results. Furthermore, I discuss the advantages
and disadvantages of monitor-based lightstages based on my experiences in this
work.
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1 Introduction

Achieving realistic colors, reflections and shadows in movie scenes is very important
and also difficult when compositing multiple shots in post-production and also
adding visual effects and other CG-elements. Achieving realistic and consistent
lighting conditions for all layers of the final image often gives not as realistic results as
the ground-truth ([CK19]). Movie production and visual effects companies like ILM
are now starting to use large LED-lightstages which show the digital environment
during the filming process to achieve realistic results already during the filming
process. 1, 2.
Most of the current lightstages are only capable of illuminating an object from a
relatively sparse set of fixed illumination directions. In this work I increase the
resolution of previous lightstages further by using monitors as light sources to get
continuous lighting patterns in all directions.

1.1 Problem Statement

This thesis aims for the comparison of traditional and monitor-based lightstages
and whether there is an advantage of using a monitor-based lightstage. I have the
task to design, build and program a monitor-based lightstage. In the end I run
small experiments with it by acquiring object information from illumination pattern
responses and then relighting it digitally.

1https://www.youtube.com/watch?v=gUnxzVOs3rk&ab_channel=ILMVFX [accessed 24 Sep, 2021]
2https://www.fxguide.com/fxfeatured/art-of-led-wall-virtual-production-part-one-
lessons-from-the-mandalorian/ [accessed 24 Sep, 2021]
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2 Related Work

Lightstages are created to acquire all needed informations of an object by scanning
it from several directions and capturing its responses to recreate its reflectance
field digitally. With this reflectance field it is possible to re-illuminate the object in
post-production.

2.1 Continuous relighting

Spherical illumination from a finite number of lights as it is done in the traditional
lightstages has always been a challenge when re-lighting the illuminated object. The
illumination is done by either using a fixed set of lights distributed evenly around
the object ([DWT+02], [WMP+06], [ECJ+06]) or by using a movable lightsource
([DHT+00], [CGS06]). Tunwattanapong et al. [TFG+13] used a rotatable LED light
arc for more continuous horizontal illumination. For realistically re-lighting a scene
with these kinds of lightstages, a large set of different lighting conditions has to be
captured. This makes the scanning process take very long if not using a high speed
camera like Wenger et al. [WGT+05] and needs a lot of storage capacity.
There exist multiple solutions to solve the problem of continuous re-lighting
from sparse sampling, which are mostly image blending techniques where the
re-illuminated image is acquired by interpolating existing responses([FLBS07]).
These image blending techniques can be based on simple (linear) blending or they
are deep learning-based([SXZ+20], [RDL+15]).
Recently, Meka et al. [MHP+19] developed a technique which only needs two differ-
ent spherical gradient illumination patterns to relight the human face, enabling real
time performance capture at high frame rates with low storage requirements.
Arguably the biggest challenges in relighting objects are the sharp specular highlights
and shadow edges since they can not simply be blended into each other which would
result in artifacts and weird looking doubled edges or doubled specular points.
Recently Xu et al. [XSHR18] presented a method which is able to relight an object
from a sparse set of five sample images.
Furthermore there exist several relighting techniques if only one original image is
available ([SKCJ18], [SBT+19], [SHS+17]).
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Chapter 2. Related Work

2.2 Continuous illumination

2.2.1 Reflective lightstages

In the past there were approaches of reflective lightstages (Peers et al. [PHD06]) which
illuminate the scene by pointing a projector or other lightsources onto a reflective
hemisphere which directs the reflected light to its center where the monitored scene
is located.

2.2.2 Monitor-based lightstages

There have been a few approaches on monitor-based lightstages as well ([ZWCS99],
[PD03]), using monitors to especially determine inter-reflections of translucent
materials and environment matting. Environment matting captures reflections and
inter-reflections of a scene. Then it can be added to a new scene, realistically reflecting
and refracting its light [CZH+00].
In 2021, Sengupta et al. [SCKSS21] introduced a technique using only one monitor
which is placed in front of the person together with a simple webcam, playing any
video and using a deep network to acquire the information of the viewer’s face.
While still having very rough results, this enables new possibilities for acquiring
human face information without using a traditional lightstage which is expensive
and not so easy to access.
Monitors are able to display a continuous lighting pattern at still high framerates.

2.3 Spherical Harmonics in Computer Graphics

Traditional lightstages with only a sparse set of lights were able to illuminate
the object by one light at a time while still keeping an appropriate cost of time
and storage. As this sample rate increases or even using high-resolution, monitor-
based lightstages this approach becomes very impractical, since the costs would be
much higher. Also, one single pixel would be way too dim to make a perceptible
difference in illumination. Thus, better illumination techniques and patterns had to
be discovered such as wavelets and spherical hamonics ([PD03], [PD05], [TFG+13],
[SS95]).
Spherical Harmonics are used in computer graphics to create simple and easy-to-
compute shaders by approximating the incident lighting. This is often used for
videogames and real-time rendering ([SKS02]). Here, environment maps are created
with the assumption of distant illumination. These environment maps can then be
transformed into and approximated with spherical harmonics to save computing
costs and enable faster real-time rendering.
Gosh et al. [GCP+09] presented a method to reliably acquire specular roughness
from second order spherical gradients.
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2.3. Spherical Harmonics in Computer Graphics

Ramamoorthi et al. [RH01] sped up the acquisition of the irradiance environment
map.
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3 Construction

Before being able to program and acquire object information for renders I first had
to build the lightstage. In this chapter I am discussing the construction process of
the lightstage and the hardware I used.
After explaining my thoughts during the design process, I am going into the details
of the building process. Building the lightstage includes the construction of the
frame, attachment of the monitors, placement of the camera and the object holder.
Finally I am shortly covering the wire connections to the computer and the setup of
the hardware I used.

3.1 The design process of the lightstage

Figure 3.1: Photo of the final lightstage. The door is opened to see the object holder
and the camera inside.
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Chapter 3. Construction

3.1.1 Shape

Before I began to build the lightstage, I have been thinking of different shapes for it.
The best shape of a lightstage in general, and closest to previous approaches like
the Lightstage 6 from [ECJ+06] or the light arc from [TFG+13], is a perfectly shaped
sphere. It is the easiest to compute when using spherical coordinates. But since it
is very hard to achieve a spherical lightstage using a limited set of flat, rectangular
monitors, this was not an option. Of course the easiest shape to form out of six
rectangular monitors is a cuboid of the size w×h×h where w is the width and h the
height of one monitor, assuming every monitor has the same size. But I wanted the
lightstage to be even more symmetrical, so I decided to create a lightstage which
is a nearly perfecly shaped cube, hoping this would make the later processing and
scanning easier, because I would not have to pay attention to every individual
monitor’s distance to the center and balance it by using different brightness settings
for each monitor.

3.1.2 Monitor arrangement

The monitors I had access to were the Dell U2412M-monitors which have a size of
55.6×36.2×6cm. Each screen is surrounded by a border of the width of 1.8cm. Thus,
the actual screen has a size of 52×32.6cm and the cube will have 32.6×32.6cm of usable
screen surface for each face of the cube. The border is elevated by approximately
5mm from the screen surface. This will be useful later when building in the camera.
The exact and more detailed information about the monitor’s measurements is
displayed more clearly in figure 3.2. Their resolution is 1920×1200 pixels and the
refresh rate is 60Hz.

Achieving the cubic shape To achieve a cubic shape with rectangular monitors
without creating gaps, I had to place the monitors in a way that the shorter edges
create a cube on the inside, while their longer edges are sticking out the lightstage.
For example, one monitor is rotated by 90 degrees, so that its longer side is peaking
out at the top of the lightstage. This could be used as an additional display to show
important information about the lightstage’s status.

The door To access the inside of the lightstage to put objects inside to scan, at least
one monitor has to be movable. I solved this by turning one monitor on the side into
a door, which swings open to a certain degree, enough to easily reach the inside.

Respecting the monitor’s borders To get the best results possible, it is desirable
to lose as little area as possible of the inner cube to borders, since these areas are "lost
pixels", where nothing can be displayed. I managed to hide some of the borders by

18



3.1. The design process of the lightstage

(a) 1

screen

border

5mm

18mm

(b)

Figure 3.2: Drawings of a monitor with all relevant measurements.

shifting some monitors in a way such that only one border is located at most of the
edges of the cube instead of two edges, as it is displayed in figure 3.3.

3.1.3 Placing the camera

For taking the images in the scanning process a camera has to be placed inside the
lightstage, aiming at the center point. I had access to Point Grey’s Flea3 FL3-U3-
32S2C-CS camera with the following specifications2:

Resolution 1920×1080
Max. framerate 60 fps

The camera is chosen due to its small size of 29×29×30mm which makes it easier to

1Source: https://downloads.dell.com/manuals/all-products/esuprt_electronics/esuprt_
display/dell-u2412m_user%27s%20guide6_de-de.pdf [accessed 24 Sep, 2021].

2Detailed informations can be found here: https://www.edmundoptics.de/p/flea3-fl3-u3-32s2c-cs-128-
color-usb-30-camera/29168/ [accessed 24 Sep, 2021]
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Figure 3.3: Design of the lightstage: monitor arrangement. The gray area marks the
inner, actual lightstage.

place it inside the lightstage. Another advantage of this camera is that it does not
need external cooling which the bigger models need. Nevertheless, it heats up to
70◦C when it is in use.
The camera is placed in the corner, since the camera covers the least number of pixels
in this area from the center point’s perspective.
Onto the camera’s body I mounted a lense from edmund optics with the variable
focal length of 3−10mm and an f-number of f/1.6.

3.1.4 The object holder

The object holder is designed to keep spherical objects stable, as well as being able to
hold other objects. I designed the holder to be round with a lowered center area so
that spherical objects can rest stable. Furthermore I planned to create an additional
3D-printed piece which can be put on top of the holder to achieve a flat surface for
other than spherical objects. In the end, this was not necessary. It is put and glued
onto a long piece of metal. An image of the holder’s 3D-model as well as some of the
most important measurements and how it is put onto the metal piece can be seen in
figure 3.5.

3.1.5 Virtual prototype

Before I started building the lightstage, I first created a digital 3D model of the final
lightstage, seen in figure 4.1. Based on this prototype I then decided how to build
the lightstage, for example which materials I want to use for different parts.

20



3.2. Building the actual lightstage

(a) Design of the camera holder.

7.1 35.9

30
4

17
21

26

1.35 22.2

4

10
21

.5

12
1.2

2.
3

(b) Top-view(top) and side-view(bottom). Lengths
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Figure 3.4: The camera holder. The camera is mounted on top of the holder.

(a) Design of the object holder.
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Figure 3.5: Design of the object holder.

3.2 Building the actual lightstage

As seen in figure 3.1 the lightstage is made out of a wooden frame, into which the
monitors are built in, facing inwards. I chose wood as the main material, since it is
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Chapter 3. Construction

Figure 3.6: Digital prototype of the lightstage.

very cheap, robust and easy to process. On the other hand it is not as precise as metal,
since it does change its shape easier. But in the end the advantages were clearly
outweighing this argument, since I intended to write a calibration tool as well.
The ligtstage has the outer scale of 67.6×67.6×67.6cm (without planks).

3.2.1 Frame

The first part of the lightstage I built was a robust frame out of wooden beams with
the scale of 6×6×55.6cm which is exactly the length and thickness of one monitor.
Unfortunately, these beams were not exactly 55.6cm long but a few millimeters shorter
due to sawing inaccuracy, so the whole lightstage had to be widened manually by
putting spacers between the beams after it became clear that filing off the inner faces
of the beams would take too long.

3.2.2 Attaching the monitors

After the frame was set up, the monitors had to be built in. The monitors are arranged
in such a way that their LED surfaces are facing inwards, forming a cube which is
as precise as possible. The lightstage was designed in a way which makes it very
easy to exchange broken monitors and other parts quickly and meanwhile being as
robust as possible.
To achieve this goal, I attached a wooden plank of the length 55.6cm+2∗6cm = 67.6cm
to the back of every monitor, protruding 6cm on both sides of the monitor to screw
it onto the frame. The big obstacle of doing so was that the planks were very bent
and twisted, which bent the entire wooden frame out of its cubic form. This had
to be countered by taking apart the frame(but leaving the planks attached to the
beams), carefully bending it into its cubic form and screwing the parts together again
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3.2. Building the actual lightstage

without damaging the lightstage or the already attached monitors. This was done
until all monitors were in place.
The vertical monitor is inserted from the top into the lightstage, supported by another
plank on the top. The plank which is attached to the back of this monitor is longer,
to use the protruding part on the bottom as support as well.
For the door I attached a longer plank on the back of the monitor, which again is
attached to a shorter beam inside of the wooden frame via a hinge. The door swings
open sideways to a degree large enough to reach the inside of the lightstage easily.
The monitors are arranged in a way so they form a cube of the inner size of
36.2×36.2×36.2cm in one corner of the lightstage. Also the offsets are chosen with
attention to lose as few pixels as possible to the borders of the monitors. The offset
is achieved by simply screwing one more plank on the back of a monitor to shift
it inwards. When buying the planks I chose the planks with a thickness of ∼ 2cm
which corresponds approximately to the size of the borders to make the shifting as
easy as possible. Figure 3.7 shows the lightstage after the monitors have been built
in. It also shows how much the defective boards are bending the lightstage.

(a) Front view of the lightstage in front of
the traditional lightstage.

(b) Back view.

Figure 3.7: The lightstage during the construction process.

3.2.3 Object holder

The object holder, on which the object can be placed in the middle of the cube, is
made with a 3D printer. Its round shape with a lowered center area enables the
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Chapter 3. Construction

placement of spheres. The holder is attached to a metal rod which goes through the
space between the door monitor’s screen and the monitor next to it. It is bent 45◦

horizontally on the inside so that it reaches the middle of the lightstage.
Previously it was planned to also 3D-print the metal part, but it had to be as robust
as possible for heavier objects like a billard ball, so I decided to use metal instead.

3.2.4 Camera holder

Above this, another metal rod goes through the gap, but directly on the inside of the
lightstage it is bent 45◦ horizontally and 30◦ vertically downwards. Then the camera
is attached onto it using another 3D-printed holder for the camera as it can be seen
in figure 3.4.

3.2.5 Cable Management

The cables are bound together and are led around the cube. I used Display Port
cables for the monitors, USB 3.1 for the camera. The power cabels are all plugged
into one extension cord with a switch to turn the lightstage on.

3.2.6 Mobility

The lightstage is very mobile, since it is built on top of a small, wheeled table. It
has also enough space behind the vertical monitor inside the frame to place a small
computer there to make it even more independent. It can be moved anywhere and
could work as soon as it has electricity.

3.3 Setting up the lightstage

After building the lightstage and connecting it to the PC, it is time to set up the
hardware.

3.3.1 The camera

Most of the values remain at their default settings. The white balance of the camera
was set to 669(red) and 682(blue).
For the lense I set the focal length to 3.5mm.

3.3.2 The monitors

The brightness settings are set to 100% and the contrast is left on the default value of
75%. Additionally to the six monitors which are directly built into the lightstage,
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3.3. Setting up the lightstage

one additional monitor is connected to the PC. It is used to control and monitor the
lightstage.
As visualized in figure 3.9, each GPU is connected with three monitors. Internally,
each GPU is assigned to one NVIDIA X-screen. This split into multiple x-screens
becomes a problem in the next chapter, because a single application can not access
multiple x-screens. At least not without admin rights, which I do not have. Thus I
had to write a program for each screen individually.
Later in the project it occured that the monitors had to be re-ordered and inverted
internally as seen in figure 3.8. This could also be solved via the lightstage’s software,
but it seemed to be the easier solution changing the graphics-driver settings.

Screen 1: DP-0 DP-2
(inverted)

DP-4

Screen 0: HDMI-0 DP-2 DP-4 DP-0

Figure 3.8: The monitors’ x-screen settings. The monitors are located next to each
other in the shown order. HDMI-0 is connected with the control monitor.

Control Monitor

Monitor 1

Monitor 2

Monitor 3

GPU 1

Camera

Monitor 4

Monitor 5

Monitor 6

GPU 2

Client 1 Client 2

Server

Figure 3.9: Lightstage setup and connection of all graphical units to the PC.
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4 Illumination and Scanning

In this section I am presenting a method for scanning the object and getting its
illumination responses to acquire important surface information afterwards.
After explaining the theoretical background, I will further explain my approach of
implementing this method.

4.1 Spherical Harmonics

In order to get information about the object’s surface and material, it has to be
illuminated first by a specific pattern which enables further processing of the
responses. This can be done in different ways:

Per Pixel Illumination The easiest and brute force approach is to just illuminate
the object by every single pixel(or light source in general) individually and taking an
image of every response. This has the advantage that complex illumination patterns
can be summed up relatively easy in the rendering and re-lighting phase. On the
other hand there is a lot of storage needed, since there has to be taken an image
for every pixel. Additionally, before a lighting pattern can be formed, there has to
be a photo for every pixel available without any intermediate result. Even if the
capture process has a speed of 60 images per second - which is unrealistic because
the exposure time should be much higher due to the low intensity of one pixel -
this would take 1200·1920

60 = 38400s, which is more than 10 hours of scanning. So this
approach is clearly not the best for an application which has to be as fast as possible.

Spherical Harmonics Another approach, and the one I went for, are lighting
patterns from spherical harmonics (SH) as used before by [TFG+13]. But the pixel
density of a monitor enables different wavelet patterns as well such [SS95].
SHs are a set of orthogonal functions on the surface of a sphere which form a

orthogonal basis. Especially being used in quantum physics, they are also very handy
by describing spherical illumination and encoding complex spherical functions as
a set of individually scaled and rotated spherical harmonics. They can be seen as
Fourier-functions for spherical surfaces. The first spherical harmonic Y0

0 =
√

1/4π is
just the average value of all values on the sphere, just as the first Fourier-function,
which is also a constant holding the average value of the signal.
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Chapter 4. Illumination and Scanning

Figure 4.1: Spherical harmonics visualized for degree m and order n. 1

Just like Fourier-functions, the increasing number of functions increases the level of
detail these functions can represent. This gives the opportunity to decide how fast
the overall scanning process should be by having a quality - speed tradeoff.
The general formula for a spherical harmonic of order l and degree m is

Ym
l (θ,ϕ) =

√
2l + 1

4π
·
(l−m)!
(l + m)!

·Pm
l (cos(θ)) · cos(eimϕ) (4.1)

where l ≥ 0, −l ≤m ≤ l, and θ,ϕ are the azimuthal and polar angle of a point on the
standard sphere’s surface. Because only the real part is needed, the equation can be
simplified to:

Re(Ym
l (θ,ϕ)) =

√
2l + 1

4π
·
(l−m)!
(l + m)!

·Pm
l (cos(θ)) · cos(mϕ) (4.2)

where Pm
l (x) is the associated Legendre-polynomial:

Pm
l (x) =

(−1)m

2ll!
(1−x2)m/2 dl+m

dxl+m
(x2
−1)l. (4.3)

Since m is always less than or equal to l, the number of different spherical harmonics
dependent on l is n = 2l + 1.

1Source: Producing 3D Audio in Ambisonics - Scientific Figure on ResearchGate. Available
from: https://www.researchgate.net/figure/First-16-spherical-harmonics-with-order-n-and-degree-
m_fig1_281559396 [accessed 24 Sep, 2021]
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4.2. Using spherical harmonics for the lightstage

Like Tunwattanapong et al. [TFG+13], let’s assume a reflectance function with a
Lambertian diffuse part D(ω) and specular part S(ω) with roughness and anisotropy.
The sum of these parts can be observed as f (ω) = D(ω) + S(ω).
By defining ω as a vector (θ,ϕ) yielding Ym

l (ω) = Ym
l (θ,ϕ) we can now write the

response function f m
l (ω) as

f m
l (ω) =

∫
Ω

f (ω) ·Ym
l (ω)dω (4.4)

which returns the response of an object illuminated by a specific spherical harmonic
Ym

l (ω).
Addressing the key observation of Ramamoorthi and Hanrahan [RH01], Tunwat-
tanapong et al. [TFG+13] wrote that "a Lambertian diffuse lobe exhibits the vast
majority of its energy in only the 0th, 1st, and 2nd order spherical harmonic bands".
Additionally, they concluded that SH coefficients of order l ≥ 3 only respond to spec-
ular reflectance which simplifies the response function to S(ω) ≈ f (ω) for l ≥ 3. This
means that the coefficients for the diffuse lobe can be computed by first determining
the specular coefficients from higher order SH and then computing D(ω) = f (ω)−S(ω)
for the lower-order SH responses.

4.2 Using spherical harmonics for the lightstage

4.2.1 Mapping SH on the monitors

Since the spherical harmonics are using the spherical coordinate system, a mapping
function is needed which maps the spheres onto the cube formed out of the monitors
to be able to display them correctly. To simplify this, it is assumed that the lightstage
is shaped as a perfect cube and there are no borders without lights. This could be
fixed by calibrating the lightstage.
The mapping function simply transforms the euclidean x, y,z coordinates of every
pixel into spherical coordinates:

θ = arctan

√
x2 + y2

z
(4.5)

ϕ = arctan
y
x

(4.6)

4.2.2 Displaying SH

Because the negative values of the SH can not be displayed on a monitor, the
positive results are shifted into the interval [0...255] and scaled accordingly as done
in [TFG+13]. By inverting the interval, a second pattern is acquired. The difference
in the object’s responses to both patterns yields the final response f m

l to the spherical
harmonic Ym

l .
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Chapter 4. Illumination and Scanning

4.2.3 Normalizing the brightness

Because the observed brightness of a pixel changes with its angle and distance, this
has to be normalized in order to get the optimal results. For the distance, I assumed
a quadratic light falloff, which means the observed brightness is proportional to 1

d2

with

d =

√
x2 + y2 + 12

being the distance to the light source. This formula can be calculated by using the
Pythagorean theorem and assuming the center of the cube is one unit away from the
monitor’s center. Now the intensity can be calculated by using

I =
1
d2 =

1
x2 + y2 + 1

where −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 and assuming that the monitor is one unit away from
the center point as seen in Figure 4.3.
To compensate for the angle, a function f (δ) (0 ≤ f (δ) ≤ 1) is applied, resulting in the
equation

L̂e = (1− f (δ)I) ·Le

where x = y = 0 at the monitor’s center and δ = tan−1x2 + y2. The exact value for f (δ)
can be determined experimentally by measuring the light intensity of a monitor
from different angles. It is important to do the experiment with the same kind of
monitor which is then used inside the lightstage, since the results might depend
on the monitor-type and the materials used. I also recommend to investigate the
difference in hue and saturation in addition to the brightness difference. In this
work, however, f (δ) is assumed to be a constant factor 0 ≤ α ≤ 1 describing only the
difference in intensity in the RGB-space, resulting in the equation

L̂e = (1−αI) ·Le (4.7)

To find out which α-value gives the best result, I placed a mirror sphere inside the
lightstage and then manually changed the value until the monitors reflected by
the mirror sphere appeared to have the same intensity everywhere. The best value
for this appeared to be α = 0.3. However, this function has to be determined more
precisely in the future.

4.3 Software

The lightstage is controlled by a program which is responsible for the scanning and
the calibration. It is divided into a server and two client programs.
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Figure 4.2: Light falloff with different α-values depending on distance d from the
center point (note that it is not identical to the center of a monitor but of
the entire lightstage).
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•
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Figure 4.3: Computing the distance d to any point p = (x, y) from the origin O. The
origin is assumed to be 1 unit away from the monitor surface, which has
a size of 2 x 2 units. Thus, it applies −45◦ ≤ δ ≤ 45◦.
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Chapter 4. Illumination and Scanning

4.3.1 Server

The server is the heart of the lightstage. It displays information on a GUI, takes
commands of the user and controls both client programs. It creates the spherical
harmonics and takes the images of the responses as well.

Synchronizing the clients By setting a delay for one or both clients, it is possible
to balance out delays, if the hardware connected to one client should be slower
than the other client’s hardware. It is also useful to slow down the overall scanning
process. This was needed when the clients were receiving messages too quickly,
yielding in multiple messages combined, unreadable for the client. Of course, this can
be solved by marking the end of each message, splitting it and adding all commands
to a queue.

Scanner The scanner object has multiple responsibilities. Before starting the
scanning process it checks if all necessary spherical harmonics are created for the
upcoming scans. If the necessary files do not exist, they are created using the spherical
harmonic class.
During the scan process, the scanner object takes the images, once the spherical
harmonics are displayed, and stores them as image files.

GUI The server has a simple graphical user interface which enables the user to
control the lightstage. The GUI can be seen in Figure 4.4. It displays an overview
about the current connection state of both clients as well as the state of the overall
lightstage. Using the corresponding buttons, the user can start the calibration and
scan process. If any operation fails, this will be displayed on the GUI as well.
On each client’s panel there is a setting to set its delay in milliseconds, which will be
forwarded to the clients.
When the scan button is being clicked, the lightstage will start the scanning process
up to the specified level of detail above it. This value corresponds to the order of the
SHs, up to which the object will be scanned with. The progress bar below shows the
scanning progress and is updated after every scanned order.

Spherical Harmonics Before calculating the spherical harmonics, a cube of size
1200 x 1200 x 1200 is created virtually and all integer-valued points on its surface are
mapped onto a unit sphere. For this I created a Vector3D structure with assigned
x, y, and z double values as well as a normalize-function. This function normalizes
the vector and maps all points from the cube’s surface, which are all stored as
Vector3D-objects, onto the unit sphere.
The SphericalHarmonics-class creates the spherical harmonics up to the 3rd order
using the formulas from [RH01] and [Slo08] who provided a set of constants and
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4.3. Software

Figure 4.4: The server GUI.
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M2 M1 M6 M5

M3

M4

(600;600;-600)

(-600;600;600)

(600;-600;600)

front monitor (door)
upper monitor

Monitor ID Origin – opposite point
Monitor 1 (-600;-600;600) – (600;-600;-600)
Monitor 2 (-600;600;600) – (-600;-600;-600)
Monitor 3 (600;600;-600) – (-600;-600;-600)
Monitor 4 (-600;600;600) – (600;-600;600)
Monitor 5 (-600;600;600) – (600;600;-600)
Monitor 6 (600;600;-600) – (600;-600;600)

Figure 4.5: The external positions and orientations of the monitors and their cor-
responding ID in the server program as well as the pixel’s internal
coordinates.

formulas to calculate the SH using the (x, y,z) coordinates. This is faster than using
the initial formula of spherical harmonics, because only simple multiplications in
time O(1) are needed.
Then, the previously presented brightness normalization filter is applied on every
square of the cube, to balance out the distance of every pixel to the cube’s center point.
Finally it stores all spherical harmonics as image files into the SphericalHarmonics-
folder, divided into six quads with 1200×1200 pixels, each quad standing for one
monitor. The images are stored as .bmp files which is a lossless and easy-to-read
format.
The mapping function which maps the squared image to the correct monitor was
done by trying different orientations of each square, finally yielding the result as
seen in 4.5.

4.3.2 Clients

The purpose of the clients is to display the spherical harmonics on the monitors. The
clients do not have their own GUI and have to be started after the server by opening
the build-folder and typing

DISPLAY=:0.x \.Lightstage x

into the command line, where x ∈ {0,1}, which is the assigned ID for the client. It is
important to start the server first and then the clients, since the clients only try to
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4.3. Software

connect to the server once when they are being created. This can be fixed easily by
calling a connect-function repeatedly until a connection could be established. When
connecting with the server, the first message to the server contains its client ID to "log
in" to the server. Then the client displays a default stand-by image while waiting for
further input from the server. This standby-image is a simple, black image, yielding
an ambient light response which is later explained in detail.
Each client is responsible for three monitors of the lightstage. It creates three windows,
stored in an array, which are then transformed to the correct positions by shifting
it 1920(1− x) + 1920i pixels sideways, where i is the window’s index in the array.
The differentiation between the clients has to be made because the control monitor
is assigned to the same screen as client 0, positioned at coordinate (0,0). Thus, all
monitors of this screen have to be moved one monitor width to the side. Of course
this could have been solved by changing the control monitor’s position in the display
settings, but since these settings could not be saved due to missing admin-rights,
this seemed to be the best option at this point.
Now, when the client receives the message for displaying a specific SH Ym

l , it loads
the corresponding image files into the buffer, displays them on the correct monitor
and returns a signal to the server when it is done.
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5 Rendering

This chapter object information acquisition and render pipeline which takes the
spherical harmonics responses and produces a rendered image out of them, given a
set of virtual lights.
After the object is scanned, surface information is acquired by using different sets of
the responses of the spherical harmonic’s illuminations.
Each response f m

l = f ·Ym
l of a spherical harmonic Ym

l can be seen as the sum of the
diffuse albedo response and the specular albedo response: f (ω) = D(ω) + S(ω).

5.1 Render basics

5.1.1 The render equation

The render equation computes the final color of a point x by considering viewing
vector −ωo, scene illumination Li(x,ωi) from direction ωi and surface-specific prop-
erties stored in the BRDF function fr(ωi,x,ωo). Le(x,ωo) describes the emitted light
from surface point x towards the camera.

Lr(x,ωo) = Le(x,ωo) +

∫
Ω

fr(ωi,x,ωo)Li(x,ωi)cosθidωi (5.1)

The term cosθi derives from Lambert’s cosine law which is described in the next
subsection.

5.1.2 Lambert’s cosine law

Lambert’s cosine law says that the radiant intensity of a Lambertian surface and
thus ideally diffuse material with constant luminance is directly proportional to the
cosine of the angle θ between the surface normal and the outgoing light direction. It
follows from his law that the radiance of a Lambertian surface stays constant and
has the same luminance for any view direction. Follwing his law, the irradiance E is
calculated by

E =

∫
Ω

Li(x,ωi) · cosθidωi (5.2)
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sur face

~N~V
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Figure 5.1: Phong illumination model
.

5.1.3 Lambertian material

For Lambertian materials, the BRDF function is constant since Lambertian materials
are perfectly diffuse and do not depend on the viewing angle.
Setting the BRDF of the render equation to Lambertian and assuming it does not
emit light on its own we get

L(x,ωo) =

∫
Ω

ρdLi(x,ωi)cosθidωi (5.3)

= ρd

∫
Ω

Li(x,ωi)cosθidωi (5.4)

where 0 ≤ ρd ≤ 1 with ρd = π · kd and kd being the material-specific diffuse reflectance
coefficient.

5.1.4 Phong shading

The Phong-shader [Pho75] linearly interpolates the normal for each surface point
from its surrounding vertex-normals. The same applies to color values. The Phong
illumiation model is not energy-preserving since it allows ambient light.
Building a render equation with the Phong illumination model, we get:

Lr = kaLa +
∑

l∈Lights

kdLl(Il ·N) + ksLl(R(Il) ·V)ke (5.5)

where I is the negative light direction, R(I) its reflectance vector, V the negative view
vector and H the halfway-vector between I and V. N describes the normal vector, as
it is also visualized in figure 5.1. Furthermore ka, kd and ks describe the constant and
material-dependent ambient, diffuse and specular coefficients with 0≤ kd +ks ≤ 1 and
0 ≤ ka ≤ 1. ke describes the size of the specular highlights and width of the specular
lobe.
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5.2. Acquiring object information

5.2 Acquiring object information

5.2.1 Diffuse albedo

The diffuse albedo map of an object can be seen as the object’s plain color without any
illumination or shadows. This can easily be acquired by illuminating the object from
all directions homogeneously. Luckily, the 0th order spherical harmonic provides
this kind of illumination pattern, thus the diffuse map corresponds to the diffuse
response D0

0 of the 0th order SH, divided by π to cancel out the integral of Lambert’s
lobe function as explained in [TFG+13].

pd =
1
π

D0
0/Y0

0 (5.6)

This formula only applies for non-specular and simple, convex-shaped objects.
Otherwise, self-reflections and self-inflicted shadows might get baked into the
diffuse map.

5.2.2 Specularity

The specularity map stores information about the specularity of an object, meaning
how "shiny" it appears under different lighting conditions, and is stored as a value
between 0(no specularity) and 1(completely specular). Inspired by [TFG+13] and
[BLL96], the specularity is being acquired by the saturation shift for a pixel under
different lighting conditions. For this I used the third order SH, since the responses
above the second order match the specular lobe closely, as it is mentioned in [TFG+13].
To compute the specular value ρs I subtract the maximum saturation of all third
order responses from the minimum saturation:

ρs = ∆Sresponse (5.7)
= argmax

m
S( f m

3 Ym
3 )−argmin

m
S( f m

3 Ym
3 ) (5.8)

5.2.3 Normal map

Normal maps are images which store information about the surface normals of an
object by representing the x, y and z components in the RGB values. Of course this
technique is limited resolution-wise to 256 steps around every axis(360◦/256steps ≈
1.4◦/step). This could be fixed by using floating point-based color representation
instead. Currently it is only possible to store positive normal values, but this can be
fixed by scaling and shifting the values to fit into the interval [0...255].

Diffuse normals The object’s diffuse surface normals are acquired by using the
diffuse responses of the first order spherical harmonics D−1

1 ,D
0
1,D

1
1. They are acquired
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by subtracting the response of the negative spherical harmonic values f m
l
− from the

response of the positive values f m
l

+, resulting in

Dm
l = f m

l
+
− f m

l
−

Since it is necessary to already know the values of the specular responses Sm
l in

order to compute D = f −S, and S is very difficult to acquire, it is assumed that
D = f . For every pixel p, the surface normal ~np is computed by first transforming all
three spherical harmonic’s responses into grayscale images using function g. Then,
each resulting grayscale image is assigned to one color channel after normalizing its
result:

~ndi f f =
1√

g(D−1
1 )2 + g(D0

1)2 + g(D1
1)2


max(0, g(D−1

1 ))

max(0, g(D0
1))

max(0, g(D1
1))

 =


R
G
B

 (5.9)

Here I already embedded the limitations of RGB values by only taking the positive
values.

Specular normals For specular surfaces, the normal acquisition is much more
complicated and it would be out of the scope of this thesis to implement, but the
rough idea by [TFG+13] is to search for the maximum peak of brightness when rotat-
ing the spherical harmonics around the object. This is done by using a hillclimbing
algorithm by Sloan [Slo08]. The specular normal then corresponds to the half-way
vector of the light direction and the viewing-vector. In this method the third order
spherical harmonics are used, since these responses closely resemble the specular
aspects of the material.

5.3 Rendering and re-illumination

5.3.1 Virtual lights

For relighting the objects, lights are needed which are placed in a virtual 3D space.
For this thesis I limit myself to simple directional light sources. The lights consist of
direction, color and intensity, where the direction is a 3-dimensional vector x, y,z,
the color a 3-dimensional RGB-vector and the intensity a real positive value.
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5.3. Rendering and re-illumination

Figure 5.2: Ambient light on a mirror sphere.

Ambient light One disadvantage of the used monitors was that they are always
emitting light even when they should display black pixel values. This results in an
ambient light, which is always present in the scene. This should be represented in
the render equation as well, extending it with the constant summand La. While in
theory the ambient light is the same at every point in the scene, this is not the case
in reality, where the ambient light is physics-based. Thus, it has to be measured at
every point and then changed for every x in the render equation, changing it to La(x).
Figure 5.2 shows the ambient light illuminating a mirror sphere. Interestingly this
light mainly comes from the lightstages’ corner areas.

5.3.2 Render equation

The render equation puts all previously acquired surface information together and
creates a re-illuminated version Lr, using a given pre-defined set of directional light
sources:

Lr(ωo,x) = La(x) +

∫
Ω

L(ωi) fWard(θi,θr) cosθi dω (5.10)

where La(x) is the global ambient light, L(ωi) is the incoming radiance from direction
ωi at point x and fWard(θi,θr) the reflectance function which depends on the incoming
and outgoing light direction.

Ward BRDF As reflectance function I used the BRDF model from Ward [War92],
since it is easy to compute but still very close to measured data. For simplicity
reasons, the material is assumed to be isotropic, so it can be computed as

fWard(θi,θr) =
ρd

π
+ρs ·

1
√

cosθicosθr
·
exp(−tan2δ/α2)

4πα
(5.11)
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where α is the standard derivation of the surface slope and δ the angle between
normal ~n and half vector ĥ. ρd corresponds to the diffuse albedo and ρs to the specular
albedo with ρd +ρs ≤ 1.
This can be extended to anisotropic materials in future works by separating α into
αx and αy.

5.4 Software implementation

The render software computes the normal, diffuse and specular map and the rendered
image. They are then displayed on a seperate GUI as seen in Figure 5.4.

5.4.1 Image processor

The image processor class has useful functions for image manipulation as well as
to compute all necessary input maps for the render function, taking the spherical
harmonic respones f m

l . It computes the normals, diffuse albedo, and specularity
maps.

5.4.2 Renderer

The renderer is called every ten seconds. This value is set arbitrarily to set a fixed
render frame rate. It can be decreased when it gets clear that the renderer does not
need that much time to render. After being called, it loads all current SH responses
from the storage, sends them to the image processor and creates a rendered image
out of the acquired information. Finally it sends all images as well as the rendering
to the GUI.
It uses the preiously presented render equation to calculate the result and stores
them as image files. It is also possible to put dynamic lights in the scene which
change their position every frame. This is done by storing the light array outside of
the function and changing their position on every call of the render function.
Practically, the render equation is implemented by simply iterating over all light
sources l ∈ L for a pixel x on the camera plane:

Lr(θr,x) =
∑
l∈L

Ll(ωi) fWard(−θli,θr) cos(−θli) (5.12)

Ll(ωi) =

0 if θli ·~n ≥ 0
Ll else
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which is then used on every pixel x within the render area A to create the final
rendered image RA.

RA =
∑
x∈A

Lr(θr,x) (5.13)

where θr is calculated by taking the dot product of the acquired normal vector ~n
from the normal map and the camera rotation ~Cr:

θr = ~n · ~Cr

and θli by computing the dot product of the light direction and the surface normal:

θli = l

The camera’s position is assumed to be at the origin of the scene, and rotated towards

the center of the lightstage which leads to a rotation vector of ~Cr =
(
−1 −1 −1

)T
.

To determine whether a light source is behind or in front of a surface, the dot product
θli ·~n is calculated. If the value is greater or equal to 0, the light source is behind the
surface and does not have to be put into the render equation.

Ambient light The ambient light has to be measured for every scene seperately by
taking an image of the scene while the monitors are displaying images with all pixel
being black. This is then subtracted from all further acquired images.
Due to the limited time, it was not possible to implement this functionality in this
work.

Render Area To speed up the render process I introduced a rectangular render
area (x1, y1,x2, y2) defined by the opposite points (x1, y1) and (x2, y2) within the image
borders, which crops the area to render und thus less pixels have to be computed.
This can speed up the rendering by up to 2 seconds as seen in figure 5.3.

GUI The GUI displays all acquired information as well as the final rendering. An
image of the GUI can be seen in Figure 5.4. On the left side it displays the final
rendering, on the right the acquired surface informations. It is updated automatically
after the next rendered image is computed.

5.5 Render results

After acquiring the object data and rendering the corresponding images, it is now
time to evaluate the render results. For testing, I used three different objects. One
diffuse sphere, one mirror sphere and one object which has diffuse and specular
aspects.
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Figure 5.3: Above: Render time comparison from 50 runs. (a) no render Area, 5×5
median filter, (b) no render area, specular and normal map are filtered
(both 3x3), (c) 800×800 render area, specular and normal map are filtered
(both 3× 3), (d) no render area, normals are filtered by a 3× 3 median
filter, (e) no render area, no filters, (f) 800× 800 render area, no filters.
Below: Breaking down the overall render time into its aspects, taking
the average times of 20 runs. The time is written in brackets behind each
aspect (milliseconds).
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Figure 5.4: GUI of the renderer. Left: Rendered image. Right from top to bottom:
Normals, speculars, mixed albedo, diffuse albedo.
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(a) (b) (c)

Figure 5.5: Comparing the (a) diffuse, (b) specular and (c) mixed maps of a diffuse
sphere.

5.5.1 Diffuse map

The diffuse and mixed maps recreate the diffuse color of the diffuse sphere very well.
A comparison of the recreated diffuse, mixed and ground truth object can be seen in
figure 5.5. In the lower part of the sphere, where it comes closer to the object holder,
the shadows are baked into the diffuse map and due to errors in the specular map it
gets a thin black outline.

5.5.2 Specular map

The specular map is a grayscale image showing the specularity of an object’s surface.
This means, diffuse objects should appear black, while highly specular surfaces
appear brighter. Looking at the result of the diffuse sphere in figure 5.9, this is close
to the expected result, ignoring the average noise for a second. Noticable is the white
line at the edge of the sphere. I assume this is the result of the Fresnel-effect, showing
that the diffuse sphere is not perfectly diffuse but has a small specularity aspect too
at high angles.

5.5.3 Noise reduction

In the beginning, the normal map and the specular albedo map were very noisy. The
first assumption was that it is due to the camera which is very noisy in dark areas,
especially when it is heated up. To test this assumption, I was using the average
value of multiple scans for every image. This improved the image quality a bit as
it can be seen in Figure 5.6. As this feature is not implemented in the lightstage,
this had to be done manually by scanning multiple times and storing each scan’s
responses into a specific subfolder. In the future this may be directly implemented
into the scanning pipeline to calculate the average values on the fly and storing the

46



5.5. Render results

(a) (b)

Figure 5.6: Noise reduction by taking multiple images and using their average values
for further processing. (a): noisy image. (b): Average values of five images.

result which decreases the memory costs.
To fix the noise that was still occuring, I applied a simple median-filter on the images
to filter out the salt and pepper noise. Trying out different kernel sizes (Figure 5.7)
showed that a kernel size of 3x3 pixels yields the best looking result. Bigger kernels
did not improve the noise and also increased the render time too much. Although the
high cost can be fixed and even be done in O(1) regarding the kernel size ([PH07]),
this would not solve the noise problem.
Further improvements to denoise the result include more advanced denoising

techniques, namely bilateral filtering. Here the edges are preserved while denoising
or smoothing the areas in between. For this, we need to know where the edges are.
Luckily, the edges can be seen very clearly on the mixed albedo map. By taking the
edges from the mixed albedo, the specular map can be filtered while still keeping
these edges. This was not done in this work, but can be easily implemented in the
future.

5.5.4 Normals

The normal map is acquired by the 1st order spherical harmonics and seems to return
good results for diffuse surfaces, as it can be seen on the diffuse sphere example in
figure 5.9.
In the beginning I was using the positive SH values only to acqurire the normal

vectors. But this solution was not very precise, since it omits half of the information.
The improved normal maps are using all spherical harmonics values by first taking
the f m

1 SH and then subtracting the f̂ m
1 from it, taking the absolute values. This

converts all normal vectors to only having positive values which means the results
are not correct for surfaces which have negative components in their normal vectors.
The final version takes the idea of the previous one, but only takes the positive normal
values into its result, omitting all vectors which have only negative parameters. This
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(a) Original specular map (b) Kernel size: 3x3 (c) Kernel size: 5x5

(d) Original specular map (e) Kernel size: 3x3 (f) Kernel size: 5x5

Figure 5.7: Mean filter results. (a)-(c): specular map. (d)-(f): final render

(a) (b) (c)

Figure 5.8: Acquiring normals (a) by only using the response of the scaled and
shifted SH values, (b) subtracting the complementary SH response and
taking the absolute values, (c) taking only the positive normal values
because storing negative values has not been implemented yet.
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(a) Normal (b) Diffuse (c) Specular (d) Render

Figure 5.9: Rendering results diffuse sphere.

results in a nice side-effect which creates the black background leading to a strong
contrast to the object.
One disdvantage of this method is that all negative normal values are lost and
capped at 0. Most of the time this will not affect the result dramatically since the

camera has a view direction of
(
−1 −1 −1

)T
, but there are cases where surfaces are

visible from the camera even when having negative surface normal values. Applying
the above mentioned fix of shifting and scaling to enable negative values as well
should solve this problem.

5.5.5 Dynamic lights

Because the scene is re-rendered after a specific time, it is possible to move the lights
around between the frames. I tested this by rotating the light source by 5 degrees
before the next frame is being rendered, resulting in an image sequence of 180 images
which show a light source rotating around the object. Parts of the sequence can be
seen in figure 5.13. When looking at the shadows, it can be seen that the sphere is not
stored as a perfectly round sphere, since the edge between light and dark parts of
the sphere does not develop along the longitudes of the sphere as the angle changes.
This indicates incorrect normal values.

5.5.6 Specular and mirror objects

Looking at the results from a mirrored sphere and a more complex object with diffuse
and specular aspects (figure 5.10 and figure 5.11), it becomes clear that the current
pipeline does not support specular materials. The normal map is only showing
diffuse normals, and the specular map does not really register specular surfaces,
since they should be much brighter.

Re-illumination from environment maps There is another technique for re-
illumination than the one presented before. Instead of using only virtual lights
illuminating a structure defined by the normal map and colored by the diffuse
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(a) Normal (b) Diffuse (c) Specular (d) Render

Figure 5.10: Rendering results mirror sphere.

(a) Normal (b) Diffuse (c) Specular (d) Render

Figure 5.11: Rendering results of an object containing diffuse and specular elements.

map, it is possible to apply any environment map illumination pattern onto a
scene. Spherical harmonics are used to simplify incoming spherical radiance and
transforming the incomming radiance into the SH-space. As the maximum SH order
increases, the quality and resolution of this transformation gets higher and closer
to the original illumination pattern. Transforming a re-illumination pattern into
spherical harmonic parameters and summing up all spherical harmonic responses
of the object results in the object as it would be illuminated by the new lighting
conditions.
I tested my lightstage by using the Grace Cathedral Illumination coefficients pro-
vided by Ramamoorthi and Hanrahan [RH01]. The result and ground truth can be
seen in figure 5.12. It is easily recognizable that there are differences in color. The
rendered image has a more dominant blue color component. My first assumption
was that it is due to wrong white balance on the camera, but the problem still
appeared after using only grayscaled images for re-illumination. This needs to be
investigated in the future.
Note that this result is only calculated by summing up the different spherical har-
monic responses weighted by the given coefficients and does not use the normals or
any other acquired object information.
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(a) Diffuse ground truth (b) Diffuse rendering

(c) Complex ground truth (d) Complex rendering

Figure 5.12: Testing the results by comparing the ground truth response from il-
lumination by the Grace Cathedral illumination pattern with the re-
illuminated version. I tested this for a diffuse sphere and an object
containing highly specular parts as well.
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α = 50◦ α = 55◦ α = 60◦ α = 65◦ α = 70◦

α = 75◦ α = 80◦ α = 85◦ α = 90◦ α = 95◦

α = 100◦ α = 105◦ α = 110◦ α = 115◦ α = 120◦

α = 125◦ α = 130◦ α = 135◦ α = 140◦ α = 145◦

α = 150◦ α = 155◦ α = 160◦ α = 165◦ α = 170◦

α = 175◦ α = 180◦ α = 185◦ α = 190◦ α = 195◦

Figure 5.13: Rendering result of a rotating lightsource(around y-Axis)
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6 Conclusion

After looking at the render results it is now time to do a conclusion and to check if the
monitor-based lightstage is as good as the other methods and what its advantages
and disadvantages are.

6.1 Discussion

Reflections One major disadvantage of monitors over a light arc are the inter-
reflectancies between monitors. When monitors emit light, this will bounce off the
other monitors, creating a low level ambient light and falsifying the responses. This
could be improved by using matt monitors which reflect less light. Another, more
mathematical approach would be to caclulate the reflected light and subtracting it
from the response.

Monitor borders Another disadvantage of using monitors are lost pixels due to
borders. This results in uneven distribution of pixels over the lightstage. For better
results these borders have to be determined via a calibration algorithm. Alternatively,
monitors without borders could be used.

Size In this work the lightstage had a size of 36.2×36.2×36.2cm. By increasing
the size of the lightstage, the brightness of the monitors or the exposure time of
the camera has to be increased in order to get responses bright enough for further
processing. Changing the lightstage’s size could improve the quality in theory
because the lightsources are closer to its assumed infinite distance when it is not
calibrated. Alternatively it might be a good idea to direct and focus the light from
the monitors directly to the center point to simulate a infinite distant lightsource.

Render time The rendering is the state which needs the most time in the pipeline.
But it is also the state which can be improved the most. After introducing a render
area, this time could already be drastically improved.
As figure 5.3 shows, the computation of the specular map needs the longest of all
steps, followed by the normal acquisition. It is advisable to concentrate most the
acceleration efforts on these parts of the render pipeline.
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Real black values The monitors which were available for this lightstage are not
able to show completely black values, so there was always an ambient light which
has to be subtracted of every response. While this is not very expensive to do, it is
still an aspect which could be improved by using monitors which can display real
black values such as OLED displays.

Noise The noise in the rendered image was a big obstacle which already could
be improved. The noise can be further reduced by taking more images of the same
response during the scan process, only storing the average response as an image file.

Normalizing monitor brightness This step brought improvement to the final
result. But it is still not perfect, because the brightness change should be determined
via measuring the amount of emitted light for different viewing angles. A spectral
analysis of the outgoing light from different angles would help as well, since the
colors seem to shift a bit when changing the angle. Also the saturation seems to
decrease with larger angles.

Resolution The resolution of the monitor-based lightstage is much higher than in
previous approaches using a light arc or a LED sphere. With monitors it is possible
to create nearly continuous illumination. The illumination density is larger closer
to the monitor’s borders, since more pixels are distributed over the same area of
the unit sphere. This could be fixed using rounded monitors or building a bigger
sphere to minimize this effect. Theoretically it could be also possible to use monitors
of higher pixel density in the center.
This resolution enables possiblities for different lighting patterns such as wavelet-
based methods.

Real time It is definitely possible to make the scanning and rendering processes
faster. Rendering can be improved by parallelizing without losing quality in the
results as discussed in the paragraph "Render time".
The scanning process can be accelerated by loading all spherical harmonics into the
GPU to prepare the actual scanning process.
It could be also possible to select the render area in the server-GUI before starting
any scanning procedure, to only capture the area of interest and thus speeding up
the camera’s capture process. Additionally it reduces the image file sizes, which
speeds up the loading and saving. In the rendering stage, loading the image files
was the most expensive part.
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6.2 Future work

There are many aspects which may improve the this work by a lot. In the following
section I am listing some of the most important improvements for future work.

Specular map In this work the specular map is acquired by a very simplified
method to show the general functionality of the lightstage. A better and more
state-of-the-art method has to be implemented.

Improving the normal map Enabling the usage of negative normal values is an
easy and fast-to-implement improvement. This might improve the quality of the
normal map and the rendered image drastically.

Faster rendering One way to speed up the real-time render pipeline is the
parallelization of the processes. Each frame could be computed on a different
thread, increasing the render speed with the number of threads available.
Second, it is possible to decrease the time the renderer needs to load the images into
the memory by loading all images into the GPU-memory directly when taking the
pictures. It is furthermore advisable to use the GPU,which is optimized for image
processing, for image calculations instead of the CPU.

Changing brightness depending on the monitor angle As clearly seen in figure
5.2 the received light from the monitors depends highly on the angle to the monitors.
This has to be compensated by measuring the shift in brightness and color depending
on the angle. It might be a good idea to investigate the possible sift in saturation as
well.

Multiple scans Since the camera shows a high noise level especially in darker
areas it is highly advisable to take multiple scans of each sh-response and only
storing the average response for further processing. The number of scans might be
based on the desired balance between the quality of the result and the available
scanning time.

Better noise filter As mentioned in the previous chapter, it is also possible to use
more advanced noise-filters to filter out most of the remaining noise.

Join all programs together The most fundamental change i propose is to join the
server program with both clients, as well as joining the lightstage with the renderer.
This would make it a lot easier and more efficient to operate. It also solves the
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problem of stacked and appended socket messages of multiple scans which appear
when the lightstage scans too fast.

Calibration By implementing a calibration the quality of the result could be
improved drastically.
In this work it is assumed that the monitor lightsources are infinitely far away
to simplify the calculations. However in reality, the monitors are very close to
the illuminated object. The distance of the monitors can be determined exactly by
calibrating it using a mirrored sphere.

Unused pixels Due to my method of shifting the monitors in the construction
phase I managed to lose less pixels to the borders. However, I never used these
newly acquired pixels and the displayed images are still quadratic. This could be
solved in the future by determining the new image sizes by testing or by calculating
it with the given pixel density.

Combine environment maps and rendering Currently, the environment map
illumination result and the virtual light illumination render result are two seperately
calculated results. It is possible to combine these techniques by interpreting the
environment map as infinitely distant illumination. By taking this map into account
in the render equation and calculating the reflected light for every point on the
object’s surface by using the previously acquired normal, specular and diffuse map
it should be possible to achieve even more realistic results.

6.3 Final conclusion

By looking at the results, using monitor-based lightstages can be a first step in the
direction of continuous illumination. Monitor-based lightstages have the advantage
of high frequency sampling, enabling the illumination by different and more precise
illumination patterns. However, the improvement is only recognizable when using
high-resolution cameras, scanning objects close to the camera or scanning surfaces
with high complexity which otherwise might cause aliasing-effects. Interreflection
between monitors is also a problem which traditional lightstages do not have to this
extent. This should to be solved in the future.
Although monitors can have a refresh rate of 244Hz or higher, they can not compete
with the high-speed scanning process of Wenger et al.[[WGT+05]]. The advantages
of monitor-based lightstages definitely lie with the continuous illumination instead
of high-speed scanning. But this might not be necessary for real-time acquisition,
since there are methods which only need a few images in order to give good-looking
render results([XSHR18], [MHP+19]). My presented lightstage can be improved in
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many ways such as applying it to specular surfaces, fixing the normal and specular
map and combining the different parts of the pipeline to make the overall process
less cumbersome. Overall, I think my work gives a good base for creating better,
more complex solutions which might create renderings of much higher quality.
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